実角、実長の求め方 (回転法/図学の利用)
椅子の脚などで、図面上に実角、実長の出ない、四方転びの場合の、実角・実長の求め方です。色々な方法がありますが、ここではウインザーチェアの脚を例に取り、最も簡単だと思われる、図学的手法の中の回転法を紹介します。
例はウインザーチェアの左前脚と考えてください。上面図は上からみた所です。正面図は前から見たところです。点a' を点b' を中心にして水平になるまで回転させます。
[線cb'] ができます。点c を点C まで降ろします。[線cb'] と [線Ca] は平行です。[線bC] が求める脚の実長です。
また、角度 [bCa] が求める実角です。つまり、[線bC] は、上面図の [線a'b'] を直角方向から見たところになるわけです。この実角から直接テンプレートを作ります。三角関数を利用して角度を出し、小さな分度器を用いてテンプレートを作るよりよほど正確で、簡単に素早くできます。
他にも図学的手法には、副平面を立てる副投象法、図形を投象面に倒すラバット法などがありますが、回転法だけで大抵は事足ります。
関心のある方は図学のテキストを参照してみると良いでしょう。